Deletion of IFT80 Impairs Epiphyseal and Articular Cartilage Formation Due to Disruption of Chondrocyte Differentiation

نویسندگان

  • Xue Yuan
  • Shuying Yang
  • Rosa Serra
چکیده

Intraflagellar transport proteins (IFT) play important roles in cilia formation and organ development. Partial loss of IFT80 function leads Jeune asphyxiating thoracic dystrophy (JATD) or short-rib polydactyly (SRP) syndrome type III, displaying narrow thoracic cavity and multiple cartilage anomalies. However, it is unknown how IFT80 regulates cartilage formation. To define the role and mechanism of IFT80 in chondrocyte function and cartilage formation, we generated a Col2α1; IFT80f/f mouse model by crossing IFT80f/f mice with inducible Col2α1-CreER mice, and deleted IFT80 in chondrocyte lineage by injection of tamoxifen into the mice in embryonic or postnatal stage. Loss of IFT80 in the embryonic stage resulted in short limbs at birth. Histological studies showed that IFT80-deficient mice have shortened cartilage with marked changes in cellular morphology and organization in the resting, proliferative, pre-hypertrophic, and hypertrophic zones. Moreover, deletion of IFT80 in the postnatal stage led to mouse stunted growth with shortened growth plate but thickened articular cartilage. Defects of ciliogenesis were found in the cartilage of IFT80-deficient mice and primary IFT80-deficient chondrocytes. Further study showed that chondrogenic differentiation was significantly inhibited in IFT80-deficient mice due to reduced hedgehog (Hh) signaling and increased Wnt signaling activities. These findings demonstrate that loss of IFT80 blocks chondrocyte differentiation by disruption of ciliogenesis and alteration of Hh and Wnt signaling transduction, which in turn alters epiphyseal and articular cartilage formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TGF-β/Smad3 Signals Repress Chondrocyte Hypertrophic Differentiation and Are Required for Maintaining Articular Cartilage

Endochondral ossification begins from the condensation and differentiation of mesenchymal cells into cartilage. The cartilage then goes through a program of cell proliferation, hypertrophic differentiation, calcification, apoptosis, and eventually is replaced by bone. Unlike most cartilage, articular cartilage is arrested before terminal hypertrophic differentiation. In this study, we showed th...

متن کامل

Study of Differentiation Potential of the Dedifferentiated Chondrocytes From Rat Articular Cartilage into Skeletal Cell Lineages

Purpose: Dedifferentiation of the chondrocyte from rat articular cartilage with multiple subcultures and study of the redifferentiation potential of the cells into bone, cartilage and fat cell lineages. Materials and Methods: In this experimental study, chondrocytes from rat articular cartilage were isolated and expanded through several successive subcultures during which the expression levels ...

متن کامل

Conditional Deletion of the Phd2 Gene in Articular Chondrocytes Accelerates Differentiation and Reduces Articular Cartilage Thickness

Based on our findings that PHD2 is a negative regulator of chondrocyte differentiation and that hypoxia signaling is implicated in the pathogenesis of osteoarthritis, we investigated the consequence of disruption of the Phd2 gene in chondrocytes on the articular cartilage phenotype in mice. Immunohistochemistry detected high expression of PHD2 in the superficial zone (SZ), while PHD3 and HIF-1α...

متن کامل

Study of Expression Level of Cartilage Genes in Rat Articular Chondrocyte Monolayer and 3D Cultures using Real Time PCR

Purpose: to compare the expression level of certain genes related to cartilage and non-cartilage tissues at monolayer and alginate cultures derived from rat articular cartilage. Materials and Methods: Articular cartilage was harvested from knee joints of 10 male rats and was digested using enzymatic solution consisting of 0.2% collagenase I and 0.1% pronase. Released chondrocyte were then plate...

متن کامل

The Expression of Signal Regulatory Protein-alpha in Normal and Osteoarthritic Human Articular Cartilage and Its Involvement in Chondrocyte Mechano-transduction Response

Signal regulatory proteins (SIRP) belong to immunoglobulin super family (IgSF) and relate to integrin signaling cascades. It has been shown that SIRPa is expressed in a variety of cells including myeloid cells and neurons. In the present study the expression of this IgSF member in articular chondrocytes was investigated. Methods: Using a panel of anti-SIRPalpha antibodies, immunohistochemistry...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015